资源类型

期刊论文 1272

年份

2024 3

2023 89

2022 112

2021 77

2020 80

2019 79

2018 66

2017 76

2016 59

2015 72

2014 42

2013 51

2012 45

2011 42

2010 53

2009 54

2008 51

2007 52

2006 43

2005 17

展开 ︾

关键词

设计 19

多目标优化 11

三峡工程 9

优化设计 9

增材制造 8

机器学习 6

材料设计 5

创新设计 4

施工 4

3D打印 3

协同设计 3

5G 2

COVID-19 2

DSM(设计结构矩阵) 2

D区 2

TRIZ 2

仿真 2

创新 2

南京长江第四大桥 2

展开 ︾

检索范围:

排序: 展示方式:

Fatigue and impact analysis and multi-objective optimization design of Mg/Al assembled wheel considering

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0701-7

摘要: The multi-material assembled light alloy wheel presents an effective lightweight solution for new energy vehicles, but its riveting connection remains a problem. To address this problem, this paper proposed the explicit riveting-implicit springback-implicit fatigue/explicit impact sequence coupling simulation analysis method, analyzed the fatigue and impact performance of the punching riveting connected magnesium/aluminum alloy (Mg/Al) assembled wheel, and constructed some major evaluation indicators. The accuracy of the proposed simulation method was verified by conducting physical experiments of single and cross lap joints. The punching riveting process parameters of the assembled wheel joints were defined as design variables, and the fatigue and impact performance of the assembled wheel was defined as the optimization objective. The connection-performance integration multi-objective optimization design of the assembled wheel considering riveting residual stress was designed via Taguchi experiment, grey relational analysis, analytic hierarchy process, principal component analysis, and entropy weighting methods. The optimization results of the three weighting methods were compared, and the optimal combination of design variables was determined. The fatigue and impact performance of the Mg/Al assembled wheel were effectively improved after optimization.

关键词: magnesium/aluminum assembled wheel     riveting residual stress     fatigue analysis     impact analysis     multi-objective optimization    

Optimal design analysis of a tubular heat exchanger network with extended surfaces using multi-objective

Hassan HAJABDOLLAHI, Mohammad SHAFIEY DEHAJ, Babak MASOUMPOUR, Mohammad ATAEIZADEH

《能源前沿(英文)》 2022年 第16卷 第5期   页码 862-875 doi: 10.1007/s11708-022-0839-3

摘要: The present work aims to investigate the influence of extended surfaces (fins) on the multi-objective optimization of a tubular heat exchanger network (THEN). An increase in the heat transfer area using various extended surfaces (fins) to enhance the performance of the heat exchanger was used while considering the effectiveness and total heat transfer area as two objective functions. In addition to the simulation of simple fins, a new set of fins, called constructal fins, was designed based on the constructal theory. Tubular heat exchanger network design parameters were chosen as optimization variables, and optimization results were achieved in such a way as to enhance the effectiveness and decrease the total heat transfer area. The results show the importance of constructal fins in improving the objective functions of heat exchangers. For instance, the simple fins case enhances the effectiveness by up to 5.3% compared to that without fins (usual heat exchanger) while using constructal fins, in addition to the 7% increment of effectiveness, reduces the total heat transfer area by 9.47%. In order to optimize the heat exchanger, the heat transfer rate and cold fluid temperature must increase, and at the same time, the hot exiting fluid temperature should decrease at the same constant total heat transfer area, which is higher in the constructal fins case. Finally, optimized design variables were studied for different cases, and the effects of various fins were reported.

关键词: constructal theory     extended surface     effectiveness     total heat transfer area     multi-objective optimization    

A multi-objective design method for seismic retrofitting of existing reinforced concrete frames using

Yue CHEN; Rong XU; Hao WU; Tao SHENG

《结构与土木工程前沿(英文)》 2022年 第16卷 第9期   页码 1089-1103 doi: 10.1007/s11709-022-0851-z

摘要: Over the past several decades, a variety of technical ways have been developed in seismic retrofitting of existing reinforced concrete frames (RFs). Among them, pin-supported rocking walls (PWs) have received much attentions to researchers recently. However, it is still a challenge that how to determine the stiffness demand of PWs and assign the value of the drift concentration factor (DCF) for entire systems rationally and efficiently. In this paper, a design method has been exploited for seismic retrofitting of existing RFs using PWs (RF-PWs) via a multi-objective evolutionary algorithm. Then, the method has been investigated and verified through a practical project. Finally, a parametric analysis was executed to exhibit the strengths and working mechanism of the multi-objective design method. To sum up, the findings of this investigation show that the method furnished in this paper is feasible, functional and can provide adequate information for determining the stiffness demand and the value of the DCF for PWs. Furthermore, it can be applied for the preliminary design of these kinds of structures.

关键词: pin-supported rocking wall     reinforced concrete frame     seismic retrofit     stiffness demand     drift concentration factor     multi-objective design     genetic algorithm     Pareto optimal solution    

Multi-objective optimal design of braced frames using hybrid genetic and ant colony optimization

Mehdi BABAEI,Ebrahim SANAEI

《结构与土木工程前沿(英文)》 2016年 第10卷 第4期   页码 472-480 doi: 10.1007/s11709-016-0368-4

摘要: In this article, multi-objective optimization of braced frames is investigated using a novel hybrid algorithm. Initially, the applied evolutionary algorithms, ant colony optimization (ACO) and genetic algorithm (GA) are reviewed, followed by developing the hybrid method. A dynamic hybridization of GA and ACO is proposed as a novel hybrid method which does not appear in the literature for optimal design of steel braced frames. Not only the cross section of the beams, columns and braces are considered to be the design variables, but also the topologies of the braces are taken into account as additional design variables. The hybrid algorithm explores the whole design space for optimum solutions. Weight and maximum displacement of the structure are employed as the objective functions for multi-objective optimal design. Subsequently, using the weighted sum method (WSM), the two objective problem are converted to a single objective optimization problem and the proposed hybrid genetic ant colony algorithm (HGAC) is developed for optimal design. Assuming different combination for weight coefficients, a trade-off between the two objectives are obtained in the numerical example section. To make the final decision easier for designers, related constraint is applied to obtain practical topologies. The achieved results show the capability of HGAC to find optimal topologies and sections for the elements.

关键词: multi-objective     hybrid algorithm     ant colony     genetic algorithm     displacement     weighted sum method     steel braced frames    

Uncertain and multi-objective programming models for crop planting structure optimization

Mo LI,Ping GUO,Liudong ZHANG,Chenglong ZHANG

《农业科学与工程前沿(英文)》 2016年 第3卷 第1期   页码 34-45 doi: 10.15302/J-FASE-2016084

摘要: Crop planting structure optimization is a significant way to increase agricultural economic benefits and improve agricultural water management. The complexities of fluctuating stream conditions, varying economic profits, and uncertainties and errors in estimated modeling parameters, as well as the complexities among economic, social, natural resources and environmental aspects, have led to the necessity of developing optimization models for crop planting structure which consider uncertainty and multi-objectives elements. In this study, three single-objective programming models under uncertainty for crop planting structure optimization were developed, including an interval linear programming model, an inexact fuzzy chance-constrained programming (IFCCP) model and an inexact fuzzy linear programming (IFLP) model. Each of the three models takes grayness into account. Moreover, the IFCCP model considers fuzzy uncertainty of parameters/variables and stochastic characteristics of constraints, while the IFLP model takes into account the fuzzy uncertainty of both constraints and objective functions. To satisfy the sustainable development of crop planting structure planning, a fuzzy-optimization-theory-based fuzzy linear multi-objective programming model was developed, which is capable of reflecting both uncertainties and multi-objective. In addition, a multi-objective fractional programming model for crop structure optimization was also developed to quantitatively express the multi-objective in one optimization model with the numerator representing maximum economic benefits and the denominator representing minimum crop planting area allocation. These models better reflect actual situations, considering the uncertainties and multi-objectives of crop planting structure optimization systems. The five models developed were then applied to a real case study in Minqin County, north-west China. The advantages, the applicable conditions and the solution methods of each model are expounded. Detailed analysis of results of each model and their comparisons demonstrate the feasibility and applicability of the models developed, therefore decision makers can choose the appropriate model when making decisions.

关键词: crop planting structure     optimization model     uncertainty     multi-objective    

提高在线模型识别平台效率的多目标最优实验设计框架 Article

Arun Pankajakshan, Conor Waldron, Marco Quaglio,  Asterios Gavriilidis, Federico Galvanin

《工程(英文)》 2019年 第5卷 第6期   页码 1049-1059 doi: 10.1016/j.eng.2019.10.003

摘要:

自动化和数字化方面的最新进展使得物理设备与其对应的虚拟设备紧密集成,从而促进了实时建模与多个过程的自动优化。此类系统提供了丰富且不断更新的数据环境,使得系统随着时间的推移做出决策,并将过程推向最优目标成为可能。在许多制造过程中,为了实现整体最优过程,必须同时评估与过程性能和成本有关的多个目标函数。本文提出了一个多目标最优实验设计框架,用于提高在线模型识别平台的效率。所提出的框架能够灵活权衡实验设计解决方案,这些解决方案可以在线计算(即在执行实验期间)。将该框架应用于流动反应器中动力学模型在线识别的案例研究,并确定了微反应器中苯甲酸(benzoic acid, BA)和乙醇酯化的动力学模型。

 

关键词: 多目标优化     最优实验设计     在线    

Build orientation determination of multi-feature mechanical parts in selective laser melting via multi-objective

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0737-8

摘要: Selective laser melting (SLM) is a unique additive manufacturing (AM) category that can be used to manufacture mechanical parts. It has been widely used in aerospace and automotive using metal or alloy powder. The build orientation is crucial in AM because it affects the as-built part, including its part accuracy, surface roughness, support structure, and build time and cost. A mechanical part is usually composed of multiple surface features. The surface features carry the production and design knowledge, which can be utilized in SLM fabrication. This study proposes a method to determine the build orientation of multi-feature mechanical parts (MFMPs) in SLM. First, the surface features of an MFMP are recognized and grouped for formulating the particular optimization objectives. Second, the estimation models of involved optimization objectives are established, and a set of alternative build orientations (ABOs) is further obtained by many-objective optimization. Lastly, a multi-objective decision making method integrated by the technique for order of preference by similarity to the ideal solution and cosine similarity measure is presented to select an optimal build orientation from those ABOs. The weights of the feature groups and considered objectives are achieved by a fuzzy analytical hierarchy process. Two case studies are reported to validate the proposed method with numerical results, and the effectiveness comparison is presented. Physical manufacturing is conducted to prove the performance of the proposed method. The measured average sampling surface roughness of the most crucial feature of the bracket in the original orientation and the orientations obtained by the weighted sum model and the proposed method are 15.82, 10.84, and 10.62 μm, respectively. The numerical and physical validation results demonstrate that the proposed method is desirable to determine the build orientations of MFMPs with competitive results in SLM.

关键词: selective laser melting (SLM)     build orientation determination     multi-feature mechanical part (MFMP)     fuzzy analytical hierarchy process     multi-objective decision making (MODM)    

Optimal dome design considering member-related design constraints

Tugrul TALASLIOGLU

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1150-1170 doi: 10.1007/s11709-019-0543-5

摘要: This study proposes to optimize the design of geometrically nonlinear dome structures. A new Multi-objective Optimization Algorithm named Pareto Archived Genetic Algorithm (PAGA), which has an ability of integrating the nonlinear structural analysis with the provisions of American Petroleum Institute specification is employed to optimize the design of ellipse and sphere-shaped dome configurations. Thus, it is possible to investigate how the qualities of optimal designations vary considering the shape, size, and topology-related design variables. Furthermore, the computing efficiency of PAGA is evaluated considering six multi-objective optimization algorithms and eight quality measuring indicators. It is shown that PAGA has a capability of both exploring an increased number of pareto solutions and predicting a pareto front with a higher convergence degree. Moreover, the inclusion of shape-related design variables leads to a decrease in both the weights of dome structures and their load-carrying capacities. However, the designer easily determines the most requested optimal design through the archiving feature of PAGA. Thus, it is also demonstrated that the proposed optimal design procedure increases the correctness degree in the evaluation of optimal dome designs through the tradeoff analysis. Consequently, PAGA is recommended as an optimization tool for the design optimization of geometrically nonlinear dome structures.

关键词: dome structure     geometric nonlinearity     multi-objective optimization     API RP2A-LRFD    

Optimization of multi-objective integrated process planning and scheduling problem using a priority based

Muhammad Farhan AUSAF,Liang GAO,Xinyu LI

《机械工程前沿(英文)》 2015年 第10卷 第4期   页码 392-404 doi: 10.1007/s11465-015-0353-y

摘要:

For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.

关键词: integrated process planning and scheduling (IPPS)     dispatching rules     priority based optimization algorithm     multi-objective optimization    

Solving multi-objective optimal power flow problem considering wind-STATCOM using differential evolution

Belkacem MAHDAD, K. SRAIRI

《能源前沿(英文)》 2013年 第7卷 第1期   页码 75-89 doi: 10.1007/s11708-012-0222-x

摘要: In this paper, a simple strategy based differential evolution was proposed for solving the problem of multi-objective environmental optimal power flow considering a hybrid model (Wind-Shunt-FACTS). The DE algorithm optimized simultaneously a combined vector control based active power of wind sources and reactive power of multi STATCOM exchanged with the electrical power system to minimize fuel cost and emissions. The proposed strategy was examined and applied to the standard IEEE 30-bus with smooth cost function to solve the problem of security environmental economic dispatch considering multi distributed hybrid model based wind and STATCOM controllers. In addition, the proposed approach was validated on a large practical electrical power system 40 generating units considering valve point effect. Simulation results demonstrate that choosing the installation of multi type of FACTS devices in coordination with many distributed wind sources is a vital research area.

关键词: differential evolution     multi-objective function     optimal power flow     economic dispatch     valve point effect     environment     wind source     STATCOM    

Multi-objective design optimization of a large-scale direct-drive permanent magnet generator for wind

Arash Hasssanpour ISFAHANI,Amirhossein Haji-Seyed BOROUJERDI,Saeed HASANZADEH

《能源前沿(英文)》 2014年 第8卷 第2期   页码 182-191 doi: 10.1007/s11708-014-0320-z

摘要: This paper presents a simultaneous multi-objective optimization of a direct-drive permanent magnet synchronous generator and a three-blade horizontal-axis wind turbine for a large scale wind energy conversion system. Analytical models of the generator and the turbine are used along with the cost model for optimization. Three important characteristics of the system i.e.,the total cost of the generator and blades, the annual energy output and the total mass of generator and blades are chosen as objective functions for a multi-objective optimization. Genetic algorithm (GA) is then employed to optimize the value of eight design parameters including seven generator parameters and a turbine parameter resulting in a set of optimal solutions. Four optimal solutions are then selected by applying some practical restrictions on the front. One of these optimal designs is chosen for finite element verification. A circuit-fed coupled time stepping finite element method is then performed to evaluate the no-load and the full load performance analysis of the system including the generator, a rectifier and a resistive load. The results obtained by the finite element analysis (FEA) verify the accuracy of the analytical model and the proposed method.

关键词: permanent magnet synchronous generator     wind turbine     direct-drive     multi-objective optimization     cost     mass     annual energy output     finite element analysis (FEA)    

Multi-objective optimization of surface texture for the slipperswash plate interface in EHA pumps

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0704-4

摘要: Well-designed surface textures can improve the tribological properties and the efficiency of the electro-hydrostatic actuator (EHA) pump under high-speed and high-pressure conditions. This study proposes a multi-objective optimization model to obtain the arbitrarily surface textures design of the slipper/swash plate interface for improving the mechanical and volumetric efficiency of the EHA pump. The model is composed of the lubrication film model, the component dynamic model considering the spinning motion, and the multi-objective optimization model. In this way, the arbitrary-shaped surface texture with the best comprehensive effect in the EHA pump is achieved and its positive effects in the EHA pump prototype are verified. Experimental results show a reduction in wear and an improvement in mechanical and volumetric efficiency by 1.4% and 0.8%, respectively, with the textured swash plate compared with the untextured one.

关键词: electro-hydrostatic actuator     axial piston pump     slipper/swash plate interface     multi-objective optimization     surface texture    

Scenario-based assessment and multi-objective optimization of urban development plan with carrying capacity

Yilei Lu, Yunqing Huang, Siyu Zeng, Can Wang

《环境科学与工程前沿(英文)》 2020年 第14卷 第2期 doi: 10.1007/s11783-019-1200-x

摘要: Impact of urban development on water system is assessed with carrying capacity. Impacts on both water resource quantity and environmental quality are involved. Multi-objective optimization revealing system trade-off facilitate the regulation. Efficiency, scale and structure of urban development are regulated in two stages. A roadmap approaching more sustainable development is provided for the case city. Environmental impact assessments and subsequent regulation measures of urban development plans are critical to human progress toward sustainability, since these plans set the scale and structure targets of future socioeconomic development. A three-step methodology for assessing and optimizing an urban development plan focusing on its impacts on the water system was developed. The methodology first predicted the pressure on the water system caused by implementation of the plan under distinct scenarios, then compared the pressure with the carrying capacity threshold to verify the system status; finally, a multi-objective optimization method was used to propose regulation solutions. The methodology enabled evaluation of the water system carrying state, taking socioeconomic development uncertainties into account, and multiple sets of improvement measures under different decisionmaker preferences were generated. The methodology was applied in the case of Zhoushan city in South-east China. The assessment results showed that overloading problems occurred in 11 out of the 13 zones in Zhoushan, with the potential pressure varying from 1.1 to 18.3 times the carrying capacity. As a basic regulation measure, an environmental efficiency upgrade could relieve the overloading in 4 zones and reduce 9%‒63% of the pressure. The optimization of industrial development showed that the pressure could be controlled under the carrying capacity threshold if the planned scale was reduced by 24% and the industrial structure was transformed. Various regulation schemes including a more suitable scale and structure with necessary efficiency standards are provided for decisionmakers that can help the case city approach a more sustainable development pattern.

关键词: Urban development plan     Urban water system     Carrying capacity     Scenario analysis     Multi-objective optimization    

Development of an integrated modeling system for improved multi-objective reservoir operation

Lei WANG, Cho Thanda NYUNT, Toshio KOIKE, Oliver SAAVEDRA, Lan Chau NGUYEN, Tran van SAP,

《结构与土木工程前沿(英文)》 2010年 第4卷 第1期   页码 47-55 doi: 10.1007/s11709-010-0001-x

摘要: Reservoir is an efficient way for flood control and improving all sectors related to water resources in the integrated water resources management. Moreover, multi-objective reservoir plays a significant role in the development of a country’s economy especially in developing countries. All multi-objective reservoirs have conflicts and disputes in flood control and water use, which makes the operator a great challenge in the decision of reservoir operation. For improved multi-objective reservoir operation, an integrated modeling system has been developed by incorporating a global optimization system (SCE-UA) into a distributed biosphere hydrological model (WEB-DHM) coupled with the reservoir routing module. The new integrated modeling system has been tested in the Da River subbasin of the Red River and showed the capability of reproducing observed reservoir inflows and optimizing the multi-objective reservoir operation. First, the WEB-DHM was calibrated for the inflows to the Hoa Binh Reservoir in the Da River. Second, the WEB-DHM coupled with the reservoir routing module was tested by simulating the reservoir water level, when using the observed dam outflows as the reservoir release. Third, the new integrated modeling system was evaluated by optimizing the operation rule of the Hoa Binh Reservoir from 1 June to 28 July 2006, which covered the annual largest flood peak. By using the optimal rule for the reservoir operation, the annual largest flood peak at downstream control point (Ben Ngoc station) was successfully reduced (by about 2.4m for water level and 2500m·s for discharge); while after the simulation periods, the reservoir water level was increased by about 20m that could supply future water use.

关键词: distributed biosphere hydrological model (WEB-DHM)     optimization     multi-objective reservoir     the Red River basin    

Reliability-based robust design optimization of vehicle components, Part I: Theory

Yimin ZHANG

《机械工程前沿(英文)》 2015年 第10卷 第2期   页码 138-144 doi: 10.1007/s11465-015-0333-2

摘要:

The reliability-based design optimization, the reliability sensitivity analysis and robust design method are employed to present a practical and effective approach for reliability-based robust design optimization of vehicle components. A procedure for reliability-based robust design optimization of vehicle components is proposed. Application of the method is illustrated by reliability-based robust design optimization of axle and spring. Numerical results have shown that the proposed method can be trusted to perform reliability-based robust design optimization of vehicle components.

关键词: vehicle components     reliability-based design optimization     reliability-based sensitivity analysis     multi-objective optimization     robust design    

标题 作者 时间 类型 操作

Fatigue and impact analysis and multi-objective optimization design of Mg/Al assembled wheel considering

期刊论文

Optimal design analysis of a tubular heat exchanger network with extended surfaces using multi-objective

Hassan HAJABDOLLAHI, Mohammad SHAFIEY DEHAJ, Babak MASOUMPOUR, Mohammad ATAEIZADEH

期刊论文

A multi-objective design method for seismic retrofitting of existing reinforced concrete frames using

Yue CHEN; Rong XU; Hao WU; Tao SHENG

期刊论文

Multi-objective optimal design of braced frames using hybrid genetic and ant colony optimization

Mehdi BABAEI,Ebrahim SANAEI

期刊论文

Uncertain and multi-objective programming models for crop planting structure optimization

Mo LI,Ping GUO,Liudong ZHANG,Chenglong ZHANG

期刊论文

提高在线模型识别平台效率的多目标最优实验设计框架

Arun Pankajakshan, Conor Waldron, Marco Quaglio,  Asterios Gavriilidis, Federico Galvanin

期刊论文

Build orientation determination of multi-feature mechanical parts in selective laser melting via multi-objective

期刊论文

Optimal dome design considering member-related design constraints

Tugrul TALASLIOGLU

期刊论文

Optimization of multi-objective integrated process planning and scheduling problem using a priority based

Muhammad Farhan AUSAF,Liang GAO,Xinyu LI

期刊论文

Solving multi-objective optimal power flow problem considering wind-STATCOM using differential evolution

Belkacem MAHDAD, K. SRAIRI

期刊论文

Multi-objective design optimization of a large-scale direct-drive permanent magnet generator for wind

Arash Hasssanpour ISFAHANI,Amirhossein Haji-Seyed BOROUJERDI,Saeed HASANZADEH

期刊论文

Multi-objective optimization of surface texture for the slipperswash plate interface in EHA pumps

期刊论文

Scenario-based assessment and multi-objective optimization of urban development plan with carrying capacity

Yilei Lu, Yunqing Huang, Siyu Zeng, Can Wang

期刊论文

Development of an integrated modeling system for improved multi-objective reservoir operation

Lei WANG, Cho Thanda NYUNT, Toshio KOIKE, Oliver SAAVEDRA, Lan Chau NGUYEN, Tran van SAP,

期刊论文

Reliability-based robust design optimization of vehicle components, Part I: Theory

Yimin ZHANG

期刊论文